GROSSULARINE, A NOVEL INDOLE DERIVATIVE FROM THE MARINE TUNICATE, DENDRODOA GROSSULARIA

Carole MOQUIN and Michèle GUYOT

Laboratoire de Chimie, Muséum National d'Histoire Naturelle,63 rue Buffon, 75005 PARIS-FRANCE

<u>Summary</u>. A new marine metabolite, derived from indole and dimethylguanidine, was isolated from the tunicate Dendrodoa grossularia. The proposed structure was based upon spectroscopic evidence.

The tunicate *Dendrodoa grossularia* grows in dark red clusters along the coast of Brittany. This marine animal differs from others tunicates already investigated, in that it produces indole derivatives⁽¹⁾; among them, Dendrodoine $\underline{1}^{(2)}$ offered the first known example of a S(II)-N bond in natural products, owing to its 1,2,4-thiadiazole nucleus.

In this paper we describe isolation and structure elucidation of a new indole derivative: Grossularine 2 from the same tunicate.

Freeze-dried animals were first extracted by hexane, then by dichloromethane and ethylacetate. Combined dichloromethane and ethyl-acetate extracts were submitted to the following chromatographic separations: a) silicagel column (chloroform-acetone: 80-20, v/v); b) LH 20 column (chloroform-methanol: 60-40); c) alumina column (THF-acetone: 20-80 or chloroformacetone: 70-30). Pure <u>2</u> was isolated as a yellow powder: 40mg from 830g of freeze-dried (i.e. about 5kg wet weight) animals (mp 350° C; no dec.).

The electron-impact mass spectrum displayed a molecular ion M⁺: 394 (confirmed by C.I.M. S.), and additonal peaks at m/e 350, 277, 250, 234, 180, 144, 116. High resolution mass measurements gave the empirical formula $C_{23}H_{18}N_60$ ⁽³⁾ and some key fragmentation ions: m/e 350: $C_{21}H_{12}N_50$, M⁺-N(CH₃)₂; 277: $C_{15}H_{11}N_50$; 250: $C_{14}H_{12}N_5$; 180: $C_{11}H_6N_3$ and 144: $C_{9}H_6N0$ ⁽³⁾. The fragmentation ions at 144 and 116 led us to suspect a 3-carbonyl indole nucleus, which was then confirmed by NMR (¹H and ¹³C).

In addition to resonances for a N-(CH₃)₂ group a δ 3.35 ppm, the ¹H NMR spectrum (table I) (250 MHz, DMSO- d_6 , δ ppm) contained signals for three N-H at δ 12.16 (1H,d,J=3 Hz), 11.6 (1H,s) and 10.94 (1H,s) exchangeable by D₂O and nine aromatic protons: five of them were readily assigned to the 3-carbonyl-indole protons: a 1H doublet 9.44 (J=3 Hz) (H-2) which collapsed in a singlet by addition of D₂O; multiplets at 8.56 (1H) (H-4); 7.56 (1H) (H-7); 7.29 (2E) (H-6) and (H-5). The remaining four signals: 8.24 (1H,d broad, J=8 Hz); 7.51 (1H,d broad,J=8 Hz); 7.42 (1H,dt, J=8 & 1 Hz) were assigned to the aromatic protons 4', 7', 5', 6' of a 2'-3'-disubstituted indole nucleus⁽⁴⁾.

	Table 1 -	lH NMR data	a of compounds	2 (DMSO)			
H-1	12.16 d	H-2	9.445 d	H-7	7.565 m	H-6+5	7.29 m
·1-2 '	11.59 s	H-4	8.56 m	H-7'	7.51 d br	H-5'	7.23 d t
H-19	10.94 s	H-4'	8.24 d br	H-6'	7.42 d t	N-(CH ₃)2	3.35 s

Treatment of <u>1</u> with Ac₂0-pyridine (100° C,4h) gave a diacetate <u>3</u>, m.p. 230°C, M.S. : M⁺ 478; ¹NMR (80 MHz, & ppm): & 10.0 (non acetylated N-H); 8.50 (4H,m) (H-4, 4', 7,7') and 7.50 (4H,m) (H-5,6, 5',6'); 3.12 (3H,s) and 2.72 (3H,s) (two N-COCH₃)

 13 C NMR data (table 2) compared with those of model compound 1 and indole confirmed the presence of indole moities <u>a</u> and <u>b</u>, of a $N(CH_3)_2$ group and suggested that the carbonyl was ketonic. The signals at δ 159.4 and 159.2 were assigned to (-C=N-); owing to the presence of a N-($(CH_3)_2$, one of them could be attributed to the carbon of a N-dimethyl guanidine while the other, due to the presence of weak acidic (since non-acetylable) N-H, could be attributed to a C=NH group. The signals at 146.8, 145.7 and 139.3 ppm could be attributed to aromatic carbons bonded to nitrogen $(=C-N)-^{(5)}$. To assemble these elements we have considered the chemical shift of one of the N-acetyl (δ 2.72 ppm) and therefore placed the C=NH in the vicinity of the NH of the 2-3-disubstituted indole nucleus. The only possibility for assembling these partial structures was therefore structure 2. This was substained by the $v_{C=0}1600~\text{cm}^{-1}$ in the infrared spectrum, and by a bathochromic affect observed when the UV spectrum was recorded with the addition of AlC1₃, both indicating chelation of the carbonyl (6-7).

	Tab	le 2 - 13C	NMR data o	f compou	nd 2 (DMSO)	(20 MHz, Bru	ker,δppr
C-10	186.8 s	C-8	135.7 s	C-4'	121.2 d		
C-13 a	159.4 s	C-8'	132.9 s	C-4	121.5 d		
C-18 a	159.2 s	C-9'	127.1 s	C-3'	119.5 s		
C-2' b	146.8 s	C-9	127.0 s	C-5'	118.6 d	$N-(CH_{2})_{2}$	39.9 a
C-15 b	145.7 s	C-5	125-4 d	C-3	114-3 s	\$ 372	•
C-11	139.3 s	C-6'	122.4 d	C-7	111.8 d		
C-2	137.2 d	C-6	122.3 d	C-7'	110.3 d		

Degradation in EIMS are in good agreement with the proposed structure and bring evidence for the presence of the two ring systems : m/e 180 and 144 and of the dimethylguanidine : m/e 350.

Acknowledgment: We wish to thank D.DAVOUST and M.T.BOISSIER for NMR spectra, J.P.BROUARD for the mass spectra, J.MERCIER for high resolution mass spectra and S.HEITZ who collected Dendrodoa grossularia.

References

1-S.HEITZ and M.GUYOT, IV Intern.Symp.Marine Products, Teneriffe, Spain, 26-30/07/1982 2-S.HEITZ, M.DURGEAT, M.GUYOT, C.BRASSY and F.BACHET, *Tetrahedron Lett.*, 1980, 21, 1457 3- Calculated for $C_{23}H_{18}N_60$: 394.1542, found: 394.153. Calculated for $C_{15}H_{11}N_50$: 277.0963, found : 277.097. Calculated for $C_{11}H_6N_3$: 180.056, found : 180.056. 4- J.KOBAYASHI, G.C.HARBOUR, J.GILMORE and K.L.RINEHART Jr., J.Am.Chem.Soc., 1984, <u>406</u>, 1526.
5- J.B.STOTHERS, "Carbon-13 NMR Spectroscopy", Academic Press, N.Y. 1972.
6- K.NAKANISHI, "Infrared Absorption Spectroscopy", Holden-Day, San-Francisco, 1962.
7- T.A. GEISSMAN and J.B.HARBORNE, J.Am.Chem.Soc., 1956, <u>78</u>, 832.

(Received in France 27 May 1984)